Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Lab Chip ; 22(6): 1171-1186, 2022 03 15.
Article in English | MEDLINE | ID: covidwho-1684131

ABSTRACT

Coronavirus disease 2019 (COVID-19) was primarily identified as a novel disease causing acute respiratory syndrome. However, as the pandemic progressed various cases of secondary organ infection and damage by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including a breakdown of the vascular barrier. As SARS-CoV-2 gains access to blood circulation through the lungs, the virus is first encountered by the layer of endothelial cells and immune cells that participate in host defense. Here, we developed an approach to study SARS-CoV-2 infection using vasculature-on-a-chip. We first modeled the interaction of virus alone with the endothelialized vasculature-on-a-chip, followed by the studies of the interaction of the virus exposed-endothelial cells with peripheral blood mononuclear cells (PBMCs). In an endothelial model grown on a permeable microfluidic bioscaffold under flow conditions, both human coronavirus (HCoV)-NL63 and SARS-CoV-2 presence diminished endothelial barrier function by disrupting VE-cadherin junctions and elevating the level of pro-inflammatory cytokines such as interleukin (IL)-6, IL-8, and angiopoietin-2. Inflammatory cytokine markers were markedly more elevated upon SARS-CoV-2 infection compared to HCoV-NL63 infection. Introduction of PBMCs with monocytes into the vasculature-on-a-chip upon SARS-CoV-2 infection further exacerbated cytokine-induced endothelial dysfunction, demonstrating the compounding effects of inter-cellular crosstalk between endothelial cells and monocytes in facilitating the hyperinflammatory state. Considering the harmful effects of SARS-CoV-2 on endothelial cells, even without active virus proliferation inside the cells, a potential therapeutic approach is critical. We identified angiopoietin-1 derived peptide, QHREDGS, as a potential therapeutic capable of profoundly attenuating the inflammatory state of the cells consistent with the levels in non-infected controls, thereby improving the barrier function and endothelial cell survival against SARS-CoV-2 infection in the presence of PBMC.


Subject(s)
Angiopoietin-1 , COVID-19 Drug Treatment , COVID-19 , Endothelium, Vascular , Inflammation , SARS-CoV-2 , COVID-19/virology , Endothelial Cells/immunology , Endothelial Cells/virology , Endothelium, Vascular/immunology , Endothelium, Vascular/virology , Humans , Immunity, Innate , Inflammation/drug therapy , Inflammation/virology , Lab-On-A-Chip Devices , Leukocytes, Mononuclear
2.
Viruses ; 14(2)2022 01 21.
Article in English | MEDLINE | ID: covidwho-1650643

ABSTRACT

The increased plasma levels of von Willebrand factor (VWF) in patients with COVID-19 was reported in many studies, and its correlation with disease severity and mortality suggest its important role in the pathogenesis of thrombosis in COVID-19. We performed histological and immunohistochemical studies of the lungs of 29 patients who died from COVID-19. We found a significant increase in the intensity of immunohistochemical reaction for VWF in the pulmonary vascular endothelium when the disease duration was more than 10 days. In the patients who had thrombotic complications, the VWF immunostaining in the pulmonary vascular endothelium was significantly more intense than in nonsurvivors without thrombotic complications. Duration of disease and thrombotic complications were found to be independent predictors of increased VWF immunostaining in the endothelium of pulmonary vessels. We also revealed that bacterial pneumonia was associated with increased VWF staining intensity in pulmonary arterial, arteriolar, and venular endothelium, while lung ventilation was an independent predictor of increased VWF immunostaining in arterial endothelium. The results of the study demonstrated an important role of endothelial VWF in the pathogenesis of thrombus formation in COVID-19.


Subject(s)
COVID-19/complications , Lung/blood supply , Venous Thrombosis/etiology , Venous Thrombosis/pathology , von Willebrand Factor/analysis , Adult , Autopsy , COVID-19/blood , Endothelium, Vascular/immunology , Female , Humans , Immunohistochemistry/methods , Lung/pathology , Male , Middle Aged , Pneumonia, Bacterial/immunology , Pulmonary Embolism , Severity of Illness Index , Venous Thrombosis/classification
3.
Biochem Pharmacol ; 197: 114909, 2022 03.
Article in English | MEDLINE | ID: covidwho-1616378

ABSTRACT

Vascular endothelial cells are major participants in and regulators of immune responses and inflammation. Vascular endotheliitis is regarded as a host immune-inflammatory response of the endothelium forming the inner surface of blood vessels in association with a direct consequence of infectious pathogen invasion. Vascular endotheliitis and consequent endothelial dysfunction can be a principle determinant of microvascular failure, which would favor impaired perfusion, tissue hypoxia, and subsequent organ failure. Emerging evidence suggests the role of vascular endotheliitis in the pathogenesis of coronavirus disease 2019 (COVID-19) and its related complications. Thus, once initiated, vascular endotheliitis and resultant cytokine storm cause systemic hyperinflammation and a thrombotic phenomenon in COVID-19, leading to acute respiratory distress syndrome and widespread organ damage. Vascular endotheliitis also appears to be a contributory factor to vasculopathy and coagulopathy in sepsis that is defined as life-threatening organ dysfunction due to a dysregulated response of the host to infection. Therefore, protecting endothelial cells and reversing vascular endotheliitis may be a leading therapeutic goal for these diseases associated with vascular endotheliitis. In this review, we outline the etiological and pathogenic importance of vascular endotheliitis in infection-related inflammatory diseases, including COVID-19, and possible mechanisms leading to vascular endotheliitis. We also discuss pharmacological agents which may be now considered as potential endotheliitis-based treatment modalities for those diseases.


Subject(s)
COVID-19/pathology , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Vascular Diseases/pathology , COVID-19/complications , COVID-19/immunology , Endothelial Cells/drug effects , Endothelial Cells/immunology , Endothelium, Vascular/drug effects , Endothelium, Vascular/immunology , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Sepsis/drug therapy , Sepsis/etiology , Sepsis/immunology , Sepsis/pathology , Vascular Diseases/drug therapy , Vascular Diseases/etiology , Vascular Diseases/immunology , COVID-19 Drug Treatment
4.
Signal Transduct Target Ther ; 6(1): 418, 2021 12 10.
Article in English | MEDLINE | ID: covidwho-1565706

ABSTRACT

The systemic processes involved in the manifestation of life-threatening COVID-19 and in disease recovery are still incompletely understood, despite investigations focusing on the dysregulation of immune responses after SARS-CoV-2 infection. To define hallmarks of severe COVID-19 in acute disease (n = 58) and in disease recovery in convalescent patients (n = 28) from Hannover Medical School, we used flow cytometry and proteomics data with unsupervised clustering analyses. In our observational study, we combined analyses of immune cells and cytokine/chemokine networks with endothelial activation and injury. ICU patients displayed an altered immune signature with prolonged lymphopenia but the expansion of granulocytes and plasmablasts along with activated and terminally differentiated T and NK cells and high levels of SARS-CoV-2-specific antibodies. The core signature of seven plasma proteins revealed a highly inflammatory microenvironment in addition to endothelial injury in severe COVID-19. Changes within this signature were associated with either disease progression or recovery. In summary, our data suggest that besides a strong inflammatory response, severe COVID-19 is driven by endothelial activation and barrier disruption, whereby recovery depends on the regeneration of the endothelial integrity.


Subject(s)
Antibodies, Viral/blood , Blood Proteins/metabolism , COVID-19/diagnosis , Cytokine Release Syndrome/diagnosis , Endothelium, Vascular/virology , Lymphopenia/diagnosis , SARS-CoV-2/pathogenicity , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/immunology , COVID-19/mortality , COVID-19/virology , Chemokine CXCL10/blood , Chemokine CXCL9/blood , Cluster Analysis , Convalescence , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Cytokine Release Syndrome/virology , Disease Progression , Endothelium, Vascular/immunology , Granulocytes/immunology , Granulocytes/virology , Hematopoietic Cell Growth Factors/blood , Hepatocyte Growth Factor/blood , Humans , Intensive Care Units , Interleukin-12 Subunit p40/blood , Interleukin-6/blood , Interleukin-8/blood , Killer Cells, Natural/immunology , Killer Cells, Natural/virology , Lectins, C-Type/blood , Lymphopenia/immunology , Lymphopenia/mortality , Lymphopenia/virology , Plasma Cells/immunology , Plasma Cells/virology , Survival Analysis , T-Lymphocytes/immunology , T-Lymphocytes/virology
5.
J Mol Cell Cardiol ; 164: 69-82, 2022 03.
Article in English | MEDLINE | ID: covidwho-1531870

ABSTRACT

The global propagation of SARS-CoV-2 leads to an unprecedented public health emergency. Despite that the lungs are the primary organ targeted by COVID-19, systemic endothelial inflammation and dysfunction is observed particularly in patients with severe COVID-19, manifested by elevated endothelial injury markers, endotheliitis, and coagulopathy. Here, we review the clinical characteristics of COVID-19 associated endothelial dysfunction; and the likely pathological mechanisms underlying the disease including direct cell entry or indirect immune overreactions after SARS-CoV-2 infection. In addition, we discuss potential biomarkers that might indicate the disease severity, particularly related to the abnormal development of thrombosis that is a fatal vascular complication of severe COVID-19. Furthermore, we summarize clinical trials targeting the direct and indirect pathological pathways after SARS-CoV-2 infection to prevent or inhibit the virus induced endothelial disorders.


Subject(s)
COVID-19/pathology , Endothelium, Vascular/pathology , SARS-CoV-2 , Adolescent , Adult , Aged , Angiotensin-Converting Enzyme 2/physiology , Animals , COVID-19/blood , COVID-19/complications , COVID-19/physiopathology , COVID-19/therapy , Clinical Trials as Topic , Endothelial Cells/pathology , Endothelial Cells/virology , Endothelium, Vascular/immunology , Endothelium, Vascular/physiopathology , HMGB1 Protein/physiology , Humans , Macaca mulatta , Mice , Neuropilin-1/physiology , Oxidative Stress , Reactive Oxygen Species , Receptors, Virus/physiology , Scavenger Receptors, Class B/physiology , Severity of Illness Index , Signal Transduction , Systemic Inflammatory Response Syndrome/pathology , Systemic Inflammatory Response Syndrome/physiopathology , Thrombophilia/etiology , Thrombophilia/physiopathology , Vascular Endothelial Growth Factor A/physiology , Vasculitis/etiology , Vasculitis/immunology , Vasculitis/physiopathology , Young Adult
6.
Hepatol Commun ; 6(2): 255-269, 2022 02.
Article in English | MEDLINE | ID: covidwho-1525435

ABSTRACT

Liver injury, characterized predominantly by elevated aspartate aminotransferase and alanine aminotransferase, is a common feature of coronavirus disease 2019 (COVID-19) symptoms caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Additionally, SARS-CoV-2 infection is associated with acute-on-chronic liver failure in patients with cirrhosis and has a notably elevated mortality in patients with alcohol-related liver disease compared to other etiologies. Direct viral infection of the liver with SARS-CoV-2 remains controversial, and alternative pathophysiologic explanations for its hepatic effects are an area of active investigation. In this review, we discuss the effects of SARS-CoV-2 and the inflammatory environment it creates on endothelial cells and platelets more generally and then with a hepatic focus. In doing this, we present vascular inflammation and thrombosis as a potential mechanism of liver injury and liver-related complications in COVID-19.


Subject(s)
Blood Platelet Disorders/virology , COVID-19/physiopathology , Endothelium, Vascular/virology , Inflammation/virology , Liver Diseases/virology , Thrombosis/virology , Blood Platelet Disorders/immunology , Blood Platelet Disorders/physiopathology , COVID-19/immunology , Endothelium, Vascular/immunology , Endothelium, Vascular/physiopathology , Humans , Inflammation/immunology , Inflammation/physiopathology , Liver Diseases/immunology , Liver Diseases/physiopathology , Thrombosis/immunology , Thrombosis/physiopathology
7.
Int J Mol Sci ; 22(18)2021 Sep 16.
Article in English | MEDLINE | ID: covidwho-1409704

ABSTRACT

Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling phospholipid. Genetic and pharmacologic studies have previously established a pathologic role for ATX and LPA signaling in pulmonary injury, inflammation, and fibrosis. Here, increased ENPP2 mRNA levels were detected in immune cells from nasopharyngeal swab samples of COVID-19 patients, and increased ATX serum levels were found in severe COVID-19 patients. ATX serum levels correlated with the corresponding increased serum levels of IL-6 and endothelial damage biomarkers, suggesting an interplay of the ATX/LPA axis with hyperinflammation and the associated vascular dysfunction in COVID-19. Accordingly, dexamethasone (Dex) treatment of mechanically ventilated patients reduced ATX levels, as shown in two independent cohorts, indicating that the therapeutic benefits of Dex include the suppression of ATX. Moreover, large scale analysis of multiple single cell RNA sequencing datasets revealed the expression landscape of ENPP2 in COVID-19 and further suggested a role for ATX in the homeostasis of dendritic cells, which exhibit both numerical and functional deficits in COVID-19. Therefore, ATX has likely a multifunctional role in COVID-19 pathogenesis, suggesting that its pharmacological targeting might represent an additional therapeutic option, both during and after hospitalization.


Subject(s)
COVID-19/diagnosis , Dendritic Cells/immunology , Phosphodiesterase Inhibitors/therapeutic use , Phosphoric Diester Hydrolases/blood , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/therapy , Cohort Studies , Datasets as Topic , Dendritic Cells/drug effects , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Female , Humans , Interleukin-6/blood , Interleukin-6/metabolism , Male , Middle Aged , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/metabolism , RNA-Seq , Respiration, Artificial , SARS-CoV-2/isolation & purification , Severity of Illness Index , Signal Transduction/drug effects , Signal Transduction/immunology , Single-Cell Analysis
8.
Trends Endocrinol Metab ; 32(11): 875-889, 2021 11.
Article in English | MEDLINE | ID: covidwho-1401891

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic of respiratory and cardiovascular diseases, known as coronavirus disease 2019 (COVID-19). SARS-CoV-2 encodes the structural proteins spike (S), envelope (E), membrane (M), and nucleocapsid (N). The receptor-binding domain on the surface subunit S1 is responsible for attachment of the virus to angiotensin (Ang)-converting enzyme 2 (ACE2), which is highly expressed in host cells. The cytokine storm observed in patients with COVID-19 contributes to the endothelial vascular dysfunction, which can lead to acute respiratory distress syndrome, multiorgan failure, alteration in iron homeostasis, and death. Growth and differentiation factor 15 (GDF15), which belongs to the transforming growth factor-ß (TGF-ß) superfamily of proteins, has a pivotal role in the development and progression of diseases because of its role as a metabolic regulator. In COVID-19, GDF15 activity increases in response to tissue damage. GDF15 appears to be a strong predictor of poor outcomes in patients critically ill with COVID-19 and acts as an 'inflammation-induced central mediator of tissue tolerance' via its metabolic properties. In this review, we examine the potential properties of GDF15 as an emerging modulator of immunity in COVID-19 in association with iron metabolism. The virus life cycle in host cell provides potential targets for drug therapy.


Subject(s)
COVID-19/immunology , Cytokine Release Syndrome/immunology , Endothelium, Vascular/immunology , Growth Differentiation Factor 15/immunology , Iron/metabolism , Apoptosis/immunology , COVID-19/metabolism , Cytokine Release Syndrome/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Glial Cell Line-Derived Neurotrophic Factor Receptors/immunology , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Growth Differentiation Factor 15/metabolism , Humans , Immunologic Factors/therapeutic use , Oxidative Stress/immunology , Prognosis , Pyroptosis/immunology , SARS-CoV-2 , COVID-19 Drug Treatment
9.
Scand J Immunol ; 94(5): e13097, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1388398

ABSTRACT

COVID-19 is a global pandemic with a daily increasing number of affected individuals. Thrombosis is a severe complication of COVID-19 that leads to a worse clinical course with higher rates of mortality. Multiple lines of evidence suggest that hyperinflammation plays a crucial role in disease progression. This review compiles clinical data of COVID-19 patients who developed thrombotic complications to investigate the possible role of hyperinflammation in inducing hypercoagulation. A systematic literature search was performed using PubMed, Embase, Medline and Scopus to identify relevant clinical studies that investigated thrombotic manifestations and reported inflammatory and coagulation biomarkers in COVID-19 patients. Only 54 studies met our inclusion criteria, the majority of which demonstrated significantly elevated inflammatory markers. In the cohort studies with control, D-dimer was significantly higher in COVID-19 patients with thrombosis as compared to the control. Pulmonary embolism, deep vein thrombosis and strokes were frequently reported which could be attributed to the hyperinflammatory response associated with COVID-19 and/or to the direct viral activation of platelets and endothelial cells, two mechanisms that are discussed in this review. It is recommended that all admitted COVID-19 patients should be assessed for hypercoagulation. Furthermore, several studies have suggested that anticoagulation may be beneficial, especially in hospitalized non-ICU patients. Although vaccines against SARS-CoV-2 have been approved and distributed in several countries, research should continue in the field of prevention and treatment of COVID-19 and its severe complications including thrombosis due to the emergence of new variants against which the efficacy of the vaccines is not yet clear.


Subject(s)
Arteries/pathology , Blood Platelets/immunology , COVID-19/immunology , Endothelium, Vascular/immunology , Inflammation/immunology , SARS-CoV-2/physiology , Venous Thrombosis/immunology , Animals , Anticoagulants/therapeutic use , Blood Platelets/virology , COVID-19/complications , Endothelium, Vascular/virology , Humans , Inflammation/complications , Phenotype , Thrombosis , Venous Thrombosis/etiology , Venous Thrombosis/prevention & control
10.
Exp Mol Med ; 53(7): 1116-1123, 2021 07.
Article in English | MEDLINE | ID: covidwho-1307318

ABSTRACT

Interleukin-6 (IL-6) plays a crucial role in host defense against infection and tissue injuries and is a bioindicator of multiple distinct types of cytokine storms. In this review, we present the current understanding of the diverse roles of IL-6, its receptors, and its signaling during acute severe systemic inflammation. IL-6 directly affects vascular endothelial cells, which produce several types of cytokines and chemokines and activate the coagulation cascade. Endothelial cell dysregulation, characterized by abnormal coagulation and vascular leakage, is a common complication in cytokine storms. Emerging evidence indicates that a humanized anti-IL-6 receptor antibody, tocilizumab, can effectively block IL-6 signaling and has beneficial effects in rheumatoid arthritis, juvenile systemic idiopathic arthritis, and Castleman's disease. Recent work has also demonstrated the beneficial effect of tocilizumab in chimeric antigen receptor T-cell therapy-induced cytokine storms as well as coronavirus disease 2019 (COVID-19). Here, we highlight the distinct contributions of IL-6 signaling to the pathogenesis of several types of cytokine storms and discuss potential therapeutic strategies for the management of cytokine storms, including those associated with sepsis and COVID-19.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19/prevention & control , Interleukin-6/genetics , Receptors, Interleukin-6/genetics , Antibodies, Monoclonal, Humanized/immunology , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/immunology , Cytokines/genetics , Cytokines/metabolism , Endothelium, Vascular/immunology , Humans , Interleukin-6/antagonists & inhibitors , Interleukin-6/immunology , Receptors, Interleukin-6/antagonists & inhibitors , Receptors, Interleukin-6/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Sepsis/genetics , Sepsis/immunology , Sepsis/pathology , Sepsis/prevention & control
12.
Elife ; 102021 03 23.
Article in English | MEDLINE | ID: covidwho-1146275

ABSTRACT

Numerous reports of vascular events after an initial recovery from COVID-19 form our impetus to investigate the impact of COVID-19 on vascular health of recovered patients. We found elevated levels of circulating endothelial cells (CECs), a biomarker of vascular injury, in COVID-19 convalescents compared to healthy controls. In particular, those with pre-existing conditions (e.g., hypertension, diabetes) had more pronounced endothelial activation hallmarks than non-COVID-19 patients with matched cardiovascular risk. Several proinflammatory and activated T lymphocyte-associated cytokines sustained from acute infection to recovery phase, which correlated positively with CEC measures, implicating cytokine-driven endothelial dysfunction. Notably, we found higher frequency of effector T cells in our COVID-19 convalescents compared to healthy controls. The activation markers detected on CECs mapped to counter receptors found primarily on cytotoxic CD8+ T cells, raising the possibility of cytotoxic effector cells targeting activated endothelial cells. Clinical trials in preventive therapy for post-COVID-19 vascular complications may be needed.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/etiology , Endothelium, Vascular/pathology , Lymphocyte Activation , Adult , Aged , COVID-19/immunology , COVID-19/pathology , Cardiovascular Diseases/immunology , Cardiovascular Diseases/pathology , Cytokines/immunology , Endothelial Cells/immunology , Endothelial Cells/pathology , Endothelium, Vascular/immunology , Female , Humans , Male , Middle Aged , Risk Factors
13.
Viruses ; 13(1)2020 12 26.
Article in English | MEDLINE | ID: covidwho-1079698

ABSTRACT

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) poses a persistent threat to global public health. Although primarily a respiratory illness, extrapulmonary manifestations of COVID-19 include gastrointestinal, cardiovascular, renal and neurological diseases. Recent studies suggest that dysfunction of the endothelium during COVID-19 may exacerbate these deleterious events by inciting inflammatory and microvascular thrombotic processes. Although controversial, there is evidence that SARS-CoV-2 may infect endothelial cells by binding to the angiotensin-converting enzyme 2 (ACE2) cellular receptor using the viral Spike protein. In this review, we explore current insights into the relationship between SARS-CoV-2 infection, endothelial dysfunction due to ACE2 downregulation, and deleterious pulmonary and extra-pulmonary immunothrombotic complications in severe COVID-19. We also discuss preclinical and clinical development of therapeutic agents targeting SARS-CoV-2-mediated endothelial dysfunction. Finally, we present evidence of SARS-CoV-2 replication in primary human lung and cardiac microvascular endothelial cells. Accordingly, in striving to understand the parameters that lead to severe disease in COVID-19 patients, it is important to consider how direct infection of endothelial cells by SARS-CoV-2 may contribute to this process.


Subject(s)
COVID-19/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , SARS-CoV-2/immunology , ADAM17 Protein/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/therapeutic use , COVID-19/immunology , Coronavirus , Coronavirus Infections/metabolism , Endothelial Cells/immunology , Endothelium/immunology , Endothelium/virology , Endothelium, Vascular/immunology , Endothelium, Vascular/metabolism , Humans , Lung/metabolism , Thrombosis , Virus Replication
14.
Med Hypotheses ; 146: 110412, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1065477

ABSTRACT

The Corona Virus Disease (COVID-19) pandemic caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) requires a rapid solution and global collaborative efforts in order to define preventive and treatment strategies. One of the major challenges of this disease is the high number of patients needing advanced respiratory support due to the Acute Respiratory Distress Syndrome (ARDS) as the lung is the major - although not exclusive - target of the virus. The molecular mechanisms, pathogenic drivers and the target cell type(s) in SARS-CoV-2 infection are still poorly understood, but the development of a "hyperactive" immune response is proposed to play a role in the evolution of the disease and it is envisioned as a major cause of morbidity and mortality. Here we propose a theory by which the main targets for SARS-CoV-2 are the Type II Alveolar Epithelial Cells and the clinical manifestations of the syndrome are a direct consequence of their involvement. We propose the existence of a vicious cycle by which once alveolar damage starts in AEC II cells, the inflammatory state is supported by macrophage pro-inflammatory polarization (M1), cytokines release and by the activation of the NF-κB pathway. If this theory is confirmed, future therapeutic efforts can be directed to target Type 2 alveolar cells and the molecular pathogenic drivers associated with their dysfunction with currently available therapeutic strategies.


Subject(s)
Alveolar Epithelial Cells/immunology , Alveolar Epithelial Cells/virology , COVID-19/immunology , COVID-19/virology , Models, Biological , NF-kappa B/immunology , SARS-CoV-2 , Alveolar Epithelial Cells/pathology , Angiotensin-Converting Enzyme 2/physiology , COVID-19/etiology , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Inflammation/immunology , Inflammation/pathology , Liquid Ventilation , Macrophages/immunology , Macrophages/pathology , NF-kappa B/antagonists & inhibitors , Neutrophils/immunology , Neutrophils/pathology , Pandemics , Pulmonary Surfactants/therapeutic use , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction/immunology
15.
Clin Appl Thromb Hemost ; 27: 1076029620977702, 2021.
Article in English | MEDLINE | ID: covidwho-1063146

ABSTRACT

The SARS-CoV-2 pandemic has focused attention on prevention, restriction and treatment methods that are acceptable worldwide. This means that they should be simple and inexpensive. This review examines the possible role of glycosaminoglycan (GAG) antithrombotics in the treatment of COVID-19. The pathophysiology of this disease reveals a complex interplay between the hemostatic and immune systems that can be readily disrupted by SARS-CoV-2. Some of the GAG antithrombotics also possess immune-modulatory actions and since they are relatively inexpensive they could play an important role in the management of COVID-19 and its complications.


Subject(s)
COVID-19 Drug Treatment , Fibrinolytic Agents/therapeutic use , Heparin/therapeutic use , Autoantibodies/biosynthesis , COVID-19/complications , COVID-19/physiopathology , Endothelium, Vascular/immunology , Endothelium, Vascular/physiopathology , Endothelium, Vascular/virology , Female , Glycosaminoglycans/therapeutic use , Hemorrhage/etiology , Hemostatic Disorders/drug therapy , Hemostatic Disorders/etiology , Hemostatic Disorders/physiopathology , Humans , Immunologic Factors/therapeutic use , Inflammation/drug therapy , Inflammation/etiology , Inflammation/physiopathology , Male , Pandemics , Risk Factors , SARS-CoV-2/pathogenicity , Thrombin/biosynthesis , Thrombosis/etiology
18.
Arthritis Rheumatol ; 73(1): 23-35, 2021 01.
Article in English | MEDLINE | ID: covidwho-757767

ABSTRACT

The clinical progression of the severe acute respiratory syndrome coronavirus 2 infection, coronavirus 2019 (COVID-19), to critical illness is associated with an exaggerated immune response, leading to magnified inflammation termed the "cytokine storm." This response is thought to contribute to the pathogenicity of severe COVID-19. There is an initial weak interferon response and macrophage activation that results in delayed neutrophil recruitment leading to impeded viral clearance. This causes prolonged immune stimulation and the release of proinflammatory cytokines. Elevated inflammatory markers in COVID-19 (e.g., d-dimer, C-reactive protein, lactate dehydrogenase, ferritin, and interleukin-6) are reminiscent of the cytokine storm seen in severe hyperinflammatory macrophage disorders. The dysfunctional immune response in COVID-19 also includes lymphopenia, reduced T cells, reduced natural killer cell maturation, and unmitigated plasmablast proliferation causing aberrant IgG levels. The progression to severe disease is accompanied by endotheliopathy, immunothrombosis, and hypercoagulability. Thus, both parts of the immune system-innate and adaptive-play a significant role in the cytokine storm, multiorgan dysfunction, and coagulopathy. This review highlights the importance of understanding the immunologic mechanisms of COVID-19 as they inform the clinical presentation and advise potential therapeutic targets.


Subject(s)
Adaptive Immunity/immunology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Immunity, Innate/immunology , Respiratory Distress Syndrome/immunology , Antibody Formation , Antiviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/physiopathology , Complement Inactivating Agents/therapeutic use , Cytokines/antagonists & inhibitors , Cytokines/immunology , Endothelium, Vascular/immunology , Endothelium, Vascular/physiopathology , Humans , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Immunologic Factors/therapeutic use , Immunologic Memory , Immunosuppressive Agents/therapeutic use , Interferons/immunology , Killer Cells, Natural/immunology , Lymphopenia/immunology , Macrophage Activation/immunology , Neutrophil Infiltration/immunology , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/immunology , Thrombophilia/blood , Thrombophilia/immunology , Thrombosis/blood , Thrombosis/immunology , COVID-19 Drug Treatment
19.
Immunobiology ; 225(6): 152001, 2020 11.
Article in English | MEDLINE | ID: covidwho-696536

ABSTRACT

In COVID-19, acute respiratory distress syndrome (ARDS) and thrombotic events are frequent, life-threatening complications. Autopsies commonly show arterial thrombosis and severe endothelial damage. Endothelial damage, which can play an early and central pathogenic role in ARDS and thrombosis, activates the lectin pathway of complement. Mannan-binding lectin-associated serine protease-2 (MASP-2), the lectin pathway's effector enzyme, binds the nucleocapsid protein of severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2), resulting in complement activation and lung injury. Narsoplimab, a fully human immunoglobulin gamma 4 (IgG4) monoclonal antibody against MASP-2, inhibits lectin pathway activation and has anticoagulant effects. In this study, the first time a lectin-pathway inhibitor was used to treat COVID-19, six COVID-19 patients with ARDS requiring continuous positive airway pressure (CPAP) or intubation received narsoplimab under compassionate use. At baseline and during treatment, circulating endothelial cell (CEC) counts and serum levels of interleukin-6 (IL-6), interleukin-8 (IL-8), C-reactive protein (CRP) and lactate dehydrogenase (LDH) were assessed. Narsoplimab treatment was associated with rapid and sustained reduction of CEC and concurrent reduction of serum IL-6, IL-8, CRP and LDH. Narsoplimab was well tolerated; no adverse drug reactions were reported. Two control groups were used for retrospective comparison, both showing significantly higher mortality than the narsoplimab-treated group. All narsoplimab-treated patients recovered and survived. Narsoplimab may be an effective treatment for COVID-19 by reducing COVID-19-related endothelial cell damage and the resultant inflammation and thrombotic risk.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19/immunology , Complement Pathway, Mannose-Binding Lectin/drug effects , Endothelium, Vascular/drug effects , SARS-CoV-2/immunology , Thrombotic Microangiopathies/drug therapy , Antibodies, Monoclonal/immunology , C-Reactive Protein/immunology , C-Reactive Protein/metabolism , COVID-19/complications , COVID-19/virology , Complement Pathway, Mannose-Binding Lectin/immunology , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin G/therapeutic use , Inflammation/complications , Inflammation/immunology , Inflammation/prevention & control , Interleukin-6/blood , Interleukin-6/immunology , Male , Mannose-Binding Protein-Associated Serine Proteases/antagonists & inhibitors , Mannose-Binding Protein-Associated Serine Proteases/immunology , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Middle Aged , Outcome Assessment, Health Care/methods , Outcome Assessment, Health Care/statistics & numerical data , Retrospective Studies , SARS-CoV-2/physiology , Thrombotic Microangiopathies/complications , Thrombotic Microangiopathies/immunology
20.
ACS Chem Neurosci ; 11(15): 2159-2162, 2020 08 05.
Article in English | MEDLINE | ID: covidwho-677409

ABSTRACT

Immune system and renin-angiotensin-aldosterone system dysregulation with associated cytokine release syndrome may be a key feature of early stage of SARS-CoV-2 organotropism and infection. Following viral mediated brain injury, dysregulated neurochemical activity may cause neurogenic stress cardiomyopathy, which is characterized by transient myocardial dysfunction and arrhythmias. Cardiomyopathy along with acute acute inflammatory thromboembolism and endotheliitis (fragile endothelium) might at least partially explain the underlying mechanisms of rapidly evolving life-threatening COVID-19. Further studies are clearly required to explore these complex pathologies.


Subject(s)
Betacoronavirus/metabolism , Brain Chemistry/physiology , Brain/metabolism , Coronavirus Infections/metabolism , Endothelium, Vascular/metabolism , Pneumonia, Viral/metabolism , Animals , Brain/immunology , Brain/pathology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Humans , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Renin-Angiotensin System/physiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL